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Isokinetic molecular dynamics (MD) simulations have been performed for 4000 and 32 000 parti-
cles interacting via a model potential that is appropriate to liquid aluminum and the Lennard-Jones
potential. Using the hypernetted-chain approximation to extrapolate the pair distribution function
(PDF) obtained by the MD simulations, the bridge function is extracted for different cutoff radii of
the pair potential and system sizes. We find that the extracted bridge function is almost indepen-
dent of the cutoff radius used in the MD simulation. Furthermore, the bridge function is efficiently
obtained by taking the extrapolating distance to be short, about 3 to 4 interatomic spacings, even
in the case of the small-size simulation, with a discarding of the PDF data outside that distance.
By solving the integral equation coupled with the correctly extracted bridge function, the PDF for
the pair potential without any truncation is calculated for liquid aluminum whose effective ion-ion
potential is accompanied by a long-ranged Friedel oscillation. It is found that this integral equation
successfully corrects the error, if any exists, in the MD PDF caused by the truncation of the pair
potential, resulting in good agreement with that from a large-size simulation for a sufficiently large
cutoff radius. Thus we have shown a method for obtaining the PDF for the full potential from the
small-size simulation with a short cutoff potential, on the basis of the fact that the bridge function
is insensitive to the truncation of the potential. At the same time, this method gives an alternative
procedure to extend the MD PDF to the whole range of distances.

PACS number(s): 61.20.Gy, 61.20.Ja, 61.25.Mv

I. INTRODUCTION

In principle, if the bridge function B(r) is given be-
forehand, the pair distribution function (PDF) of a lig-
uid with spherically symmetric pair potential u(r) is de-
termined from the solution of the integral equation for
liquids [1]: the Ornstein-Zernike relation

hr) =) = p [ B)elle = e’ = o) (1)
coupled with the closure relation

g(r) = h(r) + 1 = exp[—Bu(r) +v(r) + B(r)] . (2)

Here c(r) is the direct correlation function, p the number
density, and B the inverse temperature (kgT)~!. Prac-
tically, the detailed knowledge of the bridge function is
necessary in calculations of the PDF using the integra’
equation for a given potential and thermodynamic pa-
rameters. Even though B(r) can be expanded in terms
of h-bond elementary diagrams [1], the convergence of
this expansion is too slow to be applicable to practical
calculations for dense liquid state. Because of such a dif-
ficulty in the calculation of B(r), various approximations
have been proposed to obtain a self-consistent solution
of the integral equation. For example, the hypernetted-
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chain (HNC) and Percus-Yevick (PY) approximations
are equivalent to substituting in Eq. (2) B(r) = 0 and
—(r) +1n[1 + 4(r)’ respectively [1].

The reliability of an approximate integral equation can
be tested by comparing its solution with the result ob-
tained by computer simulations. During past decade,
based on a universality of the bridge function pointed
out by Rosenfeld and Ashcroft [2], several approximate
bridge functions [2-4] for hard-sphere fluids have been
proposed in the parametrized form to be used in Eq. (2)
and found to yield a better description up to the freezing
point than the HNC or the PY approximation. These
approximations essentially share the same class of the
short-range part of the bridge function which is respon-
sible for thermodynamic quantities such as the internal
energy and equation of state. However, it has been ques-
tioned that these parametrized hard-sphere bridge func-
tions can be used as a universal function of B(r) for an en-
tire range of distances because (i) it is not clear whether
the intermediate-range part of the bridge function holds
a universality for various classes of simple liquids [5]; (ii)
there are several approaches in calculating ar. spproxi-
mate bridge function for hard-sphere fluids, resulting in
different behavior of the intermediate-range part of the
bridge function [6-8]; and (iii) these approximate inte-
gral equations do not always reproduce a correct behav-
ior of the PDF at intermediate distances [9] even though
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a specific choice of the bridge function can be adopted
for particular systems [10].

Essentially, the bridge function can be calculated if
complete data for g(r) are available with the use of
Egs. (1) and (2). Although the computer simulation pro-
vides a PDF without any approximation to the many-
body problem, the information is limited only within the
half of the side length of the simulation cell. This causes a
difficulty in calculating the bridge function from results
of computer simulations due to unavoidable truncation
error in the Fourier transform of h(r). Furthermore, the
computer simulation may yield different PDF’s depend-
ing on the cutoff radius of the potential used in the simu-
lation especially for liquid metals whose effective ion-ion
potential is accompanied by a long-ranged oscillatory tail
[11]. Hence it is necessary to see the dependence of the
bridge function on the cutoff radius for its reasonable
comparison with theoretically predicted B(r).

The aim of this paper is to investigate the bridge func-
tion at intermediate and large distances on the basis of
results of the molecular dynamics (MD) simulations of
up to 32000 particles for the Lennard-Jones (LJ) fluid
and liquid aluminum and to find a method for obtaining
the correct PDF in the whole distances from a small-
size simulation with a truncated potential. In Sec. II we
give a brief description of the models considered and our
MD simulation procedure. We then present an extrapo-
lating procedure [12-15] for raw PDF data of computer
simulations with the HNC approximation [16] and the ex-
tracted bridge function together with results of approxi-
mate theories in Sec. III. It is found that the extracted
bridge function depends less on the cutoff radius used
in the MD simulation and that the bridge function can
be efficiently obtained by taking the extrapolating dis-
tance to be as short as 3 or 4 interatomic spacings even
in the small-size simulation. The short-range part of the
extracted bridge function agrees well with parametrized
hard-sphere bridge functions, but its intermediate-range
part cannot be reproduced by that for hard-sphere fluids
due to a significant dependency of the bridge function on
the pair potential. Section IV is devoted to the applica-
tion of the extracted bridge function for correcting the
raw PDF data by substituting the extracted bridge func-
tion into Eq. (2). We find that the integral equation (2)
with the extracted bridge function successfully improves
the cutoff error in the raw PDF for liquid aluminum, re-
sulting in good agreement with the simulation data for
a sufficiently large cutoff radius. On the other hand, for
the LJ fluid, this integral equation provides completely
the same result as the raw PDF data, but gives a precise
procedure for extending the MD PDF to the entire range
of distances.

II. MODELS AND MOLECULAR DYNAMICS
SIMULATION
A. Models

We consider two different model liquids to investigate
the bridge function: the LJ fluid characterized by the
potential

FIG. 1. Effective ion-ion potential for liquid aluminum at
T = 943 K and mass density of 2374.35 kgm™> (r, = 2.164
in units of the Bohr radius ap). The simulation is performed
for two kind of cutoff potentials at R. = 5.31a and 9.89a
indicated by the arrows.

u(r) = 4e [(g)12 - (%)6] (3)

and liquid aluminum with a model potential as described
below. The model potential for aluminum is constructed
by the use of the empty-core pseudopotential [17] for
@ips(g) in the usual expression of the effective potential
for a liquid metal (Z = 3)

262 2
i) = T2+ L () lam@F . @
with
e? me -1
o) = 1- T x(o) (1+4q2 G(q)x(q)) )

Here x(g) is the Lindhard susceptibility function and
G(q) is the local field correction; we have taken a sim-
pler expression for G(q) introduced by Taylor [18], which
is almost equivalent numerically to that of Geldart and
Taylor [19]. The parameter r. in the empty-core pseu-
dopotential is chosen to be r. = 1.12ap [20], which is
frequently used as a standard value for aluminum. The
effective ion-ion potential for liquid aluminum is calcu-
lated in tabular form on a grid with a mesh size of 0.025
in units of the ion-sphere radius a. As seen from Fig. 1,
the effective ion-ion potential for liquid aluminum shows
the well known long-ranged Friedel oscillation which rep-
resents a characteristic difference to the LJ potential. As
we will see in Sec. IV, this causes a different structure
depending on the cutoff radius.

B. Simulation

By applying the cubic periodic boundary conditions,
MD simulations have been performed for 4000 parti-
cles over 100000 time steps and 32000 particles over
50000 time steps for each model liquids at the thermo-
dynamic state near the melting point: kgT/e = 0.719
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and po® = 0.85 for the LJ fluid, and T = 943 K with
mass density of 2374.35 kgm™3 (the electron-sphere ra-
dius 7, = 2.164 in units of the Bohr radius ag) for liquid
aluminum. The pair potential is truncated to be used in
the simulations at cutoff radius R.: R. = 4.20 for LJ
fluid and for liquid aluminum two different cutoff radii
R, = 5.31a and 9.89a in order to test effects of the long-
range Friedel oscillation. For liquid aluminum, R, is lo-
cated at the node of the Friedel oscillation. These cutoff
radii correspond to about 10-20% of the side length of
the simulation cell, L = 51.18a, for the system with the
particle number N = 32 000.

In our simulations, the number density is kept con-
stant and the temperature is scaled to achieve the de-
sired value. Throughout the present work, an isokinetic
constraint by Hoover et al. has been applied to the equa-
tions of motion in order to maintain the temperature
[21). The equations of motion are integrated by a fifth
order differential algorithm [22] with the time increment
At = 0.0025p~1/3(m3)*/2, which corresponds to 6.582 fs
for the LJ fluid with potential parameters for liquid argon
and 1.235 fs for liquid aluminum, respectively. The inte-
gration error was monitored by examining the following
consistency measure A [21,23]:

a= [ s - g WO -vE) (6)

with the isokinetic parameter ( defined by
3 N
¢ = m;r,-(t) -Fi(t) . (7)

Here U(t) is the configurational internal energy of the
system at time ¢, { is the isokinetic control parameter,
r;(t) is the position of particle 7 at time ¢, and F;(t) is the
force acting on particle ¢ at time ¢. For whole simulations,
A was achieved to be less than 0.003 % relative to the
internal energy per particle.

All simulations have been carried out on a vector-
parallel processor Monte-4 computer [24] at Computing
and Information Systems Center of Japan Atomic Energy
Research Institute. The computational time required for
10000 time steps is about 32 h for N = 32000 including
the sampling of the PDF.

III. EXTRACTION OF THE BRIDGE FUNCTION

A. Numerical procedure and results

In order to extract the bridge function from the PDF
calculated by MD simulation, we have applied an extrap-
olation technique of the PDF for r > L/2 based on that
proposed by Verlet [12]. Verlet’s extrapolation scheme
assumes a hypothetical closure relation which includes
numerical data of the PDF obtained from the MD simu-
lation as follows:

_ gMD(r) ’ r<R (8 )
9(r) = { expl—u(r)1 +1()], r>R.  (sb)

Here gyp () is the PDF obtained from the MD simulation

and R < L/2 the extrapolating distance. The right-hand
side of Eq. (8b) is equivalent to the PY approximation.
Coupled with Eq. (1), Eq. (8) can be solved to yield g(r)
for r > R and ¢(r) for r < R. Verlet has applied this
scheme for the LJ fluids near the triple point by perform-
ing the MD simulation with 864 particles [12]. Different
models for the hypothetical closure relation have been
proposed in Refs. [13-15], where the right-hand side of
Eq. (8b) is replaced by a better approximation, i.e., the
modified HNC and mean-spherical approximations.

The extrapolation scheme is indispensable in order to
calculate the bridge function for low temperature states
in which the PDF tends to be far away from its asymp-
totic behavior, i.e., g(r) = 1. The present system sizes of
N = 4000 and 32000 are so large that L is long enough
to assume B(r) = 0 for » > L/2. Thus we first test the
following closure relation [16] :

_ dmp ("') )
9(r) = { exp[—Buc(r) +7(r)]

r<R (9a)
r>R, (9b)

with the choice of R = L/2, the largest extrapolating

distance. Here u.(r) is the truncated potential as in the

case of the MD simulations:
u(r) —u(R.), r<R.
0, r>R..

_ (10a)
ue(r) = (10b)
The bridge function Byp(r) is determined for distances
where gun(r) # 0 by substituting the solution of the
coupled equation given by Egs. (1) and (9) into Eq. (2)
as follows:
Buuo(r) = Buc(r) + Infgup(r)] —v(r), <R (11a)
e T o, r>R. (11b)

To solve the integral equation, we have used an iterative
procedure introduced by Ng [25]. The number of grid
points and step size used in numerical integrations are
1024 points and Ar = 0.025a, respectively. Using c(r)
obtained by the HNC equation as an initial input func-
tion, it takes about 10000 iterations to achieve

( / lein(r) — cout(r)[zrzdr) 2 <5x107°, (12)

where cip(r) and cou(r) are the input and output func-
tions, respectively. This ensures a consistency between
the raw PDF data and solution of the integral equation
given by Egs. (1) and (2) with u.(r) and B(r) = Byp(r).
The computational time required for the iterative calcu-
lation is about 10 sec on a vector processor VP2600/10
computer with the vectorized fast-Fourier-transform rou-
tine.

Figures 2 and 3 show the bridge function obtained from
the PDF data of the MD simulations for the LJ fluid
and liquid aluminum. The reliability of B(r) obtained
from the 32 000-particle simulation can be confirmed in
the case of the LJ fluid by the comparison with the result
from the Monte Carlo simulation [26] calculating the cav-
ity function as shown in Fig. 2. Although the oscillatory
behavior of By (r) is roughly independent of N and R.,
it is clearly seen for both model liquids that Byp (r) calcu-
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FIG. 2. The bridge function of the Lennard-Jones fluid ob-
tained from the MD simulation using a longer extrapolating
distance R = L/2. The full curve represents the result of
N = 32000 and the dotted curve that of N = 4000, which
has a spurious negative plateau due to the statistical noise.
The result of the Monte Carlo simulation [26] is indicated by
o.

lated from data of N = 4000 yields a negative plateau for
long-range distances, which vanishes smoothly at » = R.
A similar plateau is also found in Ref. [15] where, instead
of the HNC approximation, the mean-spherical approx-
imation is used for extrapolating the simulation data.
By varying the number of samples of the PDF, which is
proportional to N(N — 1) and sampling steps, we have
examined the behavior of this plateau. It is found that
the plateau tends to zero when the number of samples in-
creases even in the case of N = 4000 and the amplitude of

r/a

FIG. 3. The bridge function of liquid aluminum obtained
from the MD simulation using a longer extrapolating distance
R = L/2. Curves represent results for R. = 5.31a: full curve,
N = 32000; dotted curve, N = 4000. Symbols represent
results for R, = 9.89a: e, N = 32000; o, N = 4000. The
large-size simulation (N = 32000) indicates that the bridge
function (full curve) for the truncated potential at R. = 5.31a
is almost the same as that (e) for the larger cutoff R. = 9.89a
and that the negative plateaus (o, dotted curve) are spurious
due to the statistical noise.

SHAW KAMBAYASHI AND JUNZO CHIHARA 50

the plateau is almost inversely proportional to the square
root of the number of samples. Furthermore the differ-
ence of the raw PDF data for N = 4000 and N = 32000
is found to be extraordinarily larger than that expected
by the finite-size effect discussed in Refs. [13,27]. Thus
we have confirmed that the negative plateau of Byp(r)
comes from the statistical error of the raw PDF data,
which can be reduced by increasing either N or the sam-
pling steps.

As we have seen, the accurate B(r) can be obtained by
using a large system size with Eq. (9) and R = L/2. It is,
however, useful for practical applications to find a pro-
cedure to extract a reliable B(r) from the MD data of a
small system size. Taking the results for N = 32000 as a
reference data of the bridge function, we have examined
the extrapolation method by taking R of 3 to 4 inter-
atomic spacing, i.e., R ~ 5a to 7a in order to reduce the
statistical-noise effect contained in gyp(r). It is clearly
seen from Figs. 4 and 5 that Byy(r) for N = 4000 with a
short extrapolating distance R fairly well agrees with the
result for N = 32000 with R = L/2. From tests of the
stability of Byp(r) against the number of samples, about
10° to 10! samples of the PDF are found to be enough
for the calculation of Byp(r) by the present method of
Eq. (9) and R ~ 5a to 7a without missing characteristics
of the bridge function.

For the extrapolation scheme of Eq. (9), it is possible
to use another type of approximate closure relations. For
example, an extension of the raw PDF data by the mean
spherical approximation is given by [14,15]

9(r) =gmo(r), r<R (13a)

c(r)=—-Pu(r), r>R. (13b)
In order to test the stability of the present extrapolation
scheme against the choice of the extending closure rela-
tion, we have solved Eq. (13) coupled with Eq. (1) for
both the LJ fluid and liquid aluminum with R = R, and

found that Eq. (13) practically gives the same results as

0.1 T T T T

B(r)

r/’a

FIG. 4. The bridge functions of the Lennard-Jones fluid
obtained from the MD simulation. The full curve represents
the result of N = 4000 with R = 3.70 and the dotted curve
that of N = 32000 with R = L/2.
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FIG. 5. The bridge function of liquid aluminum obtained
from the MD simulation with the cutoff radius R. = 5.31a.
The full curve represents the result of N = 4000 with R = R,
and the dotted curve that of N = 32000 with R = L/2. The
spurious plateau caused by the statistical noise is deleted in
the extracted B(r) (full curve) of the small-size MD by taking
a short extrapolating distance R = 5.31a, even when that
(dotted curve) of the large-size MD still has a shallow plateau
due to a large R = L/2.

Eq. (9). This is due to the fact that the direct correlation
function smoothly approaches its asymptotic behavior of

c(r) ~ —Pu(r) (14)

for r 2 5a, as seen from Fig. 6. For the LJ fluids, how-
ever, it is necessary to pay special care in choosing R in
Eq. (13) because the direct correlation function deviates
from its asymptotic behavior of Eq. (14) for r < 6a.

B. Comparison with approximate theories

For comparison between the present results for Byp(r)
and the bridge function of approximate theories, we have

= o1}
= |

Q |
I-.

s or
< oi}
3

T ot
T-01F

2 4 3 8

r/a

FIG. 6. Asymptotic behavior of the direct correlation func-
tion ¢(r) obtained from the MD simulation: (a) result for the
LJ fluid with N = 32000 and R = L/2; (b) result for liquid
aluminum with R. = 9.89a, N = 32000, and R = L/2. The
full curve represents c(r) and the dotted curve —fBu(r). Note
that the asymptotic behavior is different between the LJ fluid
and liquid aluminum.

solved the integral equation for the LJ fluid and liquid
aluminum with the reference HNC (RHNC) and vari-
ational modified HNC (VMHNC) approximations [3,4].
The approximate bridge function of the RHNC and
VMHNC approximations are taken to be BYY (r;7n), the
bridge function of the hard-sphere fluid with Verlet-
Weis and Henderson-Grundke parametrizations [6], and
BEX(r) of Percus-Yevick equation [7], respectively, with
7 the packing fraction of the hard-sphere fluid. The op-
timal packing fraction is determined by

B"‘”(r ) e

1 /[gr) o Be Ui g _o (15)

for the RHNC equation [3] and

30 [lo6r) - gz rim) 2T e

+%[fPYV(7I) — fes(n)] =0, (16)

for the VMHNC equation [4]. Here feyv(7) is the reduced
Helmholtz free energy of the reference hard-sphere fluid
obtained from the virial equation with the Percus-Yevick
approximation and fqs(n) is that of Carnahan-Starling
parametrization [28]. The optimal packing fraction ob-
tained for the LJ fluid is n = 0.4743 and 0.4457 for the
RHNC and VMHNC equations, respectively; for liquid
aluminum, n = 0.4513 and 0.4234 for the RHNC and
VMHNC equations, respectively.

Figures 7 and 8 show the bridge function of the RHNC
and VMHNC approximations together with the results
of the MD simulation. It is easily seen that the core re-
gion (r S 2a) of Byp(r) is well reproduced for both lig-
uids by both approximations, which supports a universal
behavior of the short-range part of the bridge function
pointed out by Rosenfeld and Ashcroft [2]. This is, how-
ever, not the case for the intermediate range of B(r). For
both model liquids, the bridge function of the RHNC and
VMHNC approximations yields a clear discrepancy from

B(r)
&

r‘a

FIG. 7. Comparison of the bridge functions for the LJ
fluid obtained from the MD simulation with N = 4000 and
R = 3.70 (full curve), the RHNC approximation (dotted
curve), and the VMHNC approximation (dashed curve).
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FIG. 8. Comparison of the bridge functions for liquid alu-
minum obtained from the MD simulation with N = 4000 and
R = R. = 5.31a (full curve), the RHNC approximation (dot-
ted curve), and the VMHNC approximation (dashed curve).

the result of the MD simulation; the structures of the
RHNC and VMHNC bridge functions are the same for
both the LJ fluid and liquid aluminum irrespective of
the different character of their potentials, while the MD
bridge function exhibits a dependence on the potential.
This discrepancy in the bridge function between the MD
simulation and approximate theories practically gives no
serious effects on the first peak of the PDF and ther-
modynamic quantities such as the internal energy. But
details of the PDF for 2a < r < 5a are actually different
between approximate theories and the MD simulation in
a similar way, as discussed in Ref. [9]. Such a difference is
essentially caused by the distinctive oscillatory behavior
of the bridge function at intermediate-range distances as
seen from Figs. 7 and 8, which considerably depends on
details of the pair potential.

IV. CORRECTION TO THE PAIR
DISTRIBUTION FUNCTION

The effective pair potential between ions in liquid met-
als shows a marked difference from the LJ potential: lig-
uid metals have a soft repulsive core and long-range os-
cillatory tail. Because the computer simulation requires
a truncation of the pair potential, it is particularly inter-
esting to investigate whether this truncation affects the
behavior of the PDF obtained by the simulation. If the
raw PDF data of the MD simulation has a dependency
on the truncation of the potential, Byy(r) together with
the Ornstein-Zernike relation can be used for correcting
the raw PDF data because the bridge function extracted
from the MD simulation is insensitive to the choice of the
cutoff radius, as we have seen in Sec. III.

For both the LJ fluid and liquid aluminum, we have
tested the following closure relation in order to obtain
the PDF for the full potential u(r):

exp[—Bu(r) + y(r) + Buo(r)],
gMD("') #0
0, guo(r)=0.

(17a)
(17b)

g(r) =
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Note that Eq. (17) is different from Eq. (9) in that the
potential is an uncut one. Figure 9 shows the raw PDF
data of the MD simulation for liquid aluminum with two
different cutoff radii (R. = 5.31a and 9.89a) together
with the result of Eq. (17) using Byp(r) obtained in the
case of N = 4000 and R, = 5.31a. It is clearly seen that
these two raw PDF data show a remarkable difference
for r 2 4a, which proves a strong effect of the long-range
oscillatory tail of the effective ion-ion potential for liquid
aluminum. A similar result has also been reported by
Matsuda et al. for liquid cesium with the modified HNC
integral equation [11]. As seen from Fig. 9, the solution
of Eq. (17) and the Ornstein-Zernike relation gives an
excellent result which reproduces the raw PDF data of
the large-size MD with R, = 9.89a up to r ~ 8a even if
Bup(r) of the small-size MD with R, = 5.31a is applied.
In Fig. 9 the discrepancy between the solution of Eq. (17)
and the raw PDF data for R, = 9.89a is apparent for
r 2 8a: this discrepancy is interpreted as an artifact due
to the truncated potential for the raw PDF data because
the integral equation with By, (r) for R, = 5.31a and
9.89a gives the same result within numerical accuracy.
In the case of the LJ fluid, however, we cannot find any
differences in the PDF between the raw simulation data
and results obtained by Eq. (17). This is understood as
a result of the short-range nature of the LJ potential,
and the truncation error in the PDF does not appear in
the simulation with use of this cut potential. Note that,
despite a marked difference in the bridge function be-
tween approximate theories and the MD simulation, the
PDF’s obtained by the RHNC and VMHNC equations
agree well with the result of the integral equation with
the extracted bridge function for r 2 5a, in contrast to
the result of Lomba et al. [15], where a significant differ-
ence is found between them in that region.

(9(-1)(ra)?
o

-2

r/a

FIG. 9. Comparison of the raw PDF data for liquid alu-
minum obtained from the MD simulation with N = 32000:
dotted curve, R. = 5.31a; full curve, R, = 9.89a. The raw
PDF (full curve) for R. = 9.89a shows good agreement up to
near its cutoff distance R. = 9.89a with the solution (o) of
the integral equation with the extracted bridge function from
the small-size MD (N = 4000) for the truncated potential
at R. = 5.31a. The PDF of the integral equation with the
extracted bridge function becomes identical to those of the
RHNC and VMHNC equations for r 2 5a.
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FIG. 10. Comparison of the static structure factors for
liquid aluminum obtained from the MD simulation with
N = 4000 and R. = 5.31a: the full curve is from Eq. (9);
the dotted curve is from Eq. (17). The structure factor (full
curve) of the truncated potential shows a distinguishable dif-
ference from that (dotted curve) of the uncut potential.

Improvement of the raw simulation data with Eq. (17)
is also able to apply for calculations of the static structure
factor S(q) defined by

S@=1+p [epl-ia-dor) -1 (18)

Figure 10 shows two static structure factors for liquid alu-
minum: one for the truncated potential calculated from
the extended PDF data with Eq. (9) and the other for the
full potential obtained from Eq. (17). It is clearly seen
that characteristics of the first peak of S(q) are largely
altered by the truncation of the pair potential: the peak
height for the truncated potential is smaller than that
for the full potential and the peak position for the full
potential is shifted toward the origin.

V. DISCUSSION

We have performed extensive MD simulations for the
dense LJ fluid and liquid aluminum with 4000 and 32 000
particles. The bridge function, whose properties are im-
portant for a practical application of the integral equa-
tion theory, has been extracted from the PDF data of
the MD simulation by using the HNC approximation for
extrapolating the raw PDF data. The extracted bridge
function in this way is found to be sensitive to the sta-
tistical noise in the raw PDF data, yielding a spurious
negative plateau at long-range distances, when the ex-
trapolating distance is chosen to be half of the side length
of the simulation cell. It is important to take the extrap-
olating distance as short as 5a to 7a with a discarding
of the PDF data outside that distance; then, the effect
of statistical noise contained in the raw simulation data
is successfully reduced and the present procedure pro-
vides a good result for the bridge function even in the
case of relatively inaccurate data of N = 4000. The ex-
tracted bridge function is found to depend less on the
system size and the cutoff radius used in the simulation.
The extension of the simulation data by the mean spher-
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ical approximation gives the same results as the present
procedure because the asymptotic behavior of the direct
correlation function is attained for » 2 5a for both model
liquids.

The short-range part of the bridge function obtained
from the MD simulation is well reproduced by the RHNC
and VMHNC approximations, supporting a universality
of the short-range part of the bridge function pointed out
by Rosenfeld and Ashcroft [2]. The intermediate-range
part of the bridge function, however, is found to depend
on details of the pair potential used in the simulation,
resulting in a discrepancy in the intermediate-range part
of the PDF’s obtained by the computer simulation and
approximate integral equation.

For liquid aluminum whose effective ion-ion potential
is accompanied by the long-range oscillatory tail, the MD
simulations with different cutoff radii yield different be-
haviors of the long-range part of the PDF. In order to cor-
rect the error of the raw PDF data due to the truncation
in the potential, we have evaluated the integral equation
for the uncut potential coupled with the extracted bridge
function from the MD simulation, utilizing the insensi-
bility of the bridge function to the cutoff radius of the
potential used in the MD simulation. It is found that the
integral equation with the extracted bridge function suc-
cessfully improves the long-range part of the PDF, which
agrees well with the raw PDF data with a large cutoff ra-
dius. The improving method of the raw simulation data
is also applied to get the static structure factor, providing
a higher first peak than that obtained by the extrapola-
tion procedure with the truncated potential. The present
result suggests that the comparison of the raw simulation
data with experimental data as well as results of approx-
imate theories requires special care, especially for some
liquid metals. At least it is possible for the significant
truncation error in the PDF to appear for liquid metals
interacting via such a potential with a positive minimum
as the model potential for aluminum.

The present extrapolation procedure can be applied
for various model liquids, including binary mixtures, and
provides their accurate bridge functions at the same time.
The resultant bridge function can be used further for im-
proving approximate theories for the integral equation by
taking it as a reference datum, and also for applying it
to the quantal HNC theory [29] in constructing effective
pair potentials of liquid metal by utilizing the MD cor-
relation functions for the uncut potential. Finally, cal-
culations of the bridge function for liquid alkali metals
by the present procedure are now undertaken for testing
the applicability of the extrapolation scheme for different
liquid metals.
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